
IoT Cat Toy System: Code Overview Sheet

Project Summary: This project is an interactive IoT cat toy system powered by three
ESP32s: Base, Sensor, and Trigger. The Sensor ESP uses an ultrasonic sensor to
detect paw movement and a photoresistor (LDR) to check ambient lighting conditions.
When the light is low and a paw is detected, it signals the Base ESP. The Base ESP
then activates a DC motor to rotate the turret and a servo to move a laser pointer
vertically. The Trigger ESP contains a manual override button that only activates if the
photoresistor detects a low-light environment.

Main Components & GPIO Mapping:

Component Description GPIO Pin(s) ESP
Role

Ultrasonic
Sensor

Detects paw movement Trig: GPIO32 Sensor

 Echo: GPIO14

DC Motor +
Encoder

Rotates turret base IN1: GPIO25, IN2:
GPIO26

Base

 Position feedback via
encoder

ENC_A: GPIO33,
ENC_B: GPIO27

Base

Servo Motor Moves laser up/down Signal: GPIO12 Base

LED System status indicator GPIO13 Base

Photoresistor
(LDR)

Senses ambient light level
(voltage divider)

A0: GPIO36 Sensor

Button Manual trigger input GPIO5 (example) Trigger

Mosfet STP16NF06L and Mosfet bs170

Sender Code Explanation

from machine import ADC, Pin, time_pulse_us
from time import sleep_ms
import network
import espnow

- This sets up modules for reading sensor input, setting up network capabilities,
communicating with ESP-NOW protocol, and handling timing.

─────────── GPIO SETUP ───────────
TRIG = Pin(32, Pin.OUT, value=0)
ECHO = Pin(14, Pin.IN)
ldr = ADC(Pin(34))

- TRIG is the variable used to trigger the ultrasonic sensor
- ECHO is the variable that receives the echo signal from ultrasonic sensor
- Ldr is the analoug input pin connected to the light dependent resistor (LDR)

─────────── LDR SETUP ───────────
ldr.atten(ADC.ATTN_11DB)
LIGHT_THRESHOLD = 1000

- This basically sets a threshold to determine whether it’s “light” or “dark”.

─────────── ESP-NOW SETUP ───────────
sta = network.WLAN(network.STA_IF)
sta.active(True)
sta.disconnect()

e = espnow.ESPNow()
e.active(True)

peer = b'\x10\x06\x1c\x0c\xe1\x44' # reciever MAC Addresss
e.add_peer(peer)

- This code initializes the Wi-Fi interface that prepares the ultrasonic sensor and LDR to
sense distance and light.

- Sets up ESP-NOW protocol to send data to another ESP32.

─────────── DISTANCE FUNCTION ───────────
def distance_cm():
 TRIG.off(); sleep_ms(2)
 TRIG.on(); sleep_ms(10)
 TRIG.off()
 try:
 us = time_pulse_us(ECHO, 1, 30_000)
 return round((us / 2) / 29.1, 2)
 except OSError:

 return -1
- Sends a 10ms trigger pulse to the ultrasonic sensor
- Converts time to distance in centimeters.

─────────── DISTANCE FILTERING ───────────
def stable_distance():
 readings = []
 for _ in range(5):
 d = distance_cm()
 if 0 < d < 100:
 readings.append(d)
 sleep_ms(10)
 if readings:
 readings.sort()
 return readings[len(readings) // 2]
 else:
 return -1

- Takes 5 distance reading and returns the median value if the readings are valid.

─────────── PAW DETECTION ───────────
def paw_detected():
 print("Paw Detected!")
 e.send(peer, "PAW")

-

─────────── WAIT FOR LIGHTS OFF ───────────
while True:
 light = ldr.read()
 print(f"LDR value: {light}", end=' ')
 if light > LIGHT_THRESHOLD:
 print("Lights are ON — turn off lights to start play.")
 else:
 print("Lights OFF — starting play!")
 break
 sleep_ms(500)

─────────── MAIN LOOP ───────────

while True:
 # Wait for lights OFF to start play
 while True:
 light = ldr.read()
 print(f"LDR value: {light}", end=' ')

 if light > LIGHT_THRESHOLD:
 print("Lights are ON — waiting...")
 else:
 print("Lights OFF — starting play!")
 break
 sleep_ms(500)

 # Set new ultrasonic baseline before play begins
 baseline_cm = stable_distance()
 print(f"Baseline distance: {baseline_cm:.2f} cm")

 while True:
 # Check if lights turned back on mid-play
 light = ldr.read()
 if light > LIGHT_THRESHOLD:
 print("Lights turned ON — stopping play.")
 break # Exit play mode

 d = stable_distance()
 if d == -1:
 print("Sensor error or out of range")
 continue

 delta = baseline_cm - d
 print(f"dist={d:.2f} cm Δ={delta:.2f} cm")

 if delta > 5:
 confirm = 0
 for _ in range(8):
 dd = stable_distance()
 if dd != -1 and (baseline_cm - dd > 5):
 confirm += 1
 sleep_ms(50)
 if confirm >= 6:
 paw_detected()
 sleep_ms(2000)
 else:
 print("False alarm")
 sleep_ms(200)
 else:
 baseline_cm = 0.9 * baseline_cm + 0.1 * d

 sleep_ms(50)

