loT Cat Toy System: Code Overview Sheet

Project Summary: This project is an interactive |loT cat toy system powered by three
ESP32s: Base, Sensor, and Trigger. The Sensor ESP uses an ultrasonic sensor to
detect paw movement and a photoresistor (LDR) to check ambient lighting conditions.
When the light is low and a paw is detected, it signals the Base ESP. The Base ESP
then activates a DC motor to rotate the turret and a servo to move a laser pointer
vertically. The Trigger ESP contains a manual override button that only activates if the

photoresistor detects a low-light environment.

Main Components & GPIO Mapping:

Component Description
Ultrasonic Detects paw movement
Sensor
DC Motor + Rotates turret base
Encoder

Position feedback via

encoder
Servo Motor Moves laser up/down
LED System status indicator
Photoresistor Senses ambient light level
(LDR) (voltage divider)
Button Manual trigger input

Mosfet STP16NFO6L and Mosfet bs170

Sender Code Explanation

GPIO Pin(s)
Trig: GP1032
Echo: GPIO14

IN1: GP1025, IN2:
GP1026

ENC_A: GPIO33,
ENC_B: GPI027

Signal: GP1012

GPI1O13

AO0: GPIO36

GPIO5 (example)

ESP
Role

Sensor

Base

Base

Base

Base

Sensor

Trigger

from machine import ADC, Pin, time_pulse_us
from time import sleep_ms
import network
import espnow
- This sets up modules for reading sensor input, setting up network capabilities,
communicating with ESP-NOW protocol, and handling timing.

GPIO SETUP
TRIG = Pin(32, Pin.OUT, value=0)
ECHO = Pin(14, Pin.IN)
Idr = ADC(Pin(34))

- TRIG is the variable used to trigger the ultrasonic sensor

- ECHO is the variable that receives the echo signal from ultrasonic sensor

- Ldris the analoug input pin connected to the light dependent resistor (LDR)

LDR SETUP
Idr.atten(ADC.ATTN_11DB)
LIGHT_THRESHOLD = 1000

- This basically sets a threshold to determine whether it’s “light” or “dark”.

ESP-NOW SETUP
sta = network. WLAN(network.STA_IF)
sta.active(True)
sta.disconnect()

e = espnow.ESPNow()
e.active(True)

peer = b"\x10\x06\x1c\x0c\xe 1\x44' # reciever MAC Addresss
e.add_peer(peer)
- This code initializes the Wi-Fi interface that prepares the ultrasonic sensor and LDR to
sense distance and light.
- Sets up ESP-NOW protocol to send data to another ESP32.

DISTANCE FUNCTION
def distance_cm():
TRIG.off(); sleep_ms(2)
TRIG.on(); sleep_ms(10)
TRIG.off()
try:
us = time_pulse_us(ECHO, 1, 30_000)
return round((us / 2) / 29.1, 2)
except OSError:

return -1
- Sends a 10ms trigger pulse to the ultrasonic sensor
- Converts time to distance in centimeters.

DISTANCE FILTERING
def stable_distance():
readings =[]
for _in range(5):
d = distance_cm()
if 0 <d <100:
readings.append(d)
sleep_ms(10)
if readings:
readings.sort()
return readings[len(readings) // 2]
else:
return -1
- Takes 5 distance reading and returns the median value if the readings are valid.

PAW DETECTION
def paw_detected():

print("Paw Detected!")

e.send(peer, "PAW")

WAIT FOR LIGHTS OFF
while True:
light = Idr.read()
print(f"LDR value: {light}", end=" ")
if light > LIGHT_THRESHOLD:
print("Lights are ON — turn off lights to start play.")
else:
print("Lights OFF — starting play!")
break
sleep_ms(500)

MAIN LOOP
while True:
Wait for lights OFF to start play
while True:

light = Idr.read()
print(f'LDR value: {light}", end=" ")

if light > LIGHT_THRESHOLD:
print("Lights are ON — waiting...")

else:
print("Lights OFF — starting play!")
break

sleep_ms(500)

Set new ultrasonic baseline before play begins
baseline_cm = stable_distance()
print(f"Baseline distance: {baseline_cm:.2f} cm")

while True:
Check if lights turned back on mid-play
light = Idr.read()
if light > LIGHT_THRESHOLD:
print("Lights turned ON — stopping play.")
break # Exit play mode

d = stable_distance()

ifd==-1:
print("Sensor error or out of range")
continue

delta = baseline_cm - d
print(f"dist={d:.2f} cm A={delta:.2f} cm")

if delta > 5:
confirm =0
for _in range(8):
dd = stable_distance()
if dd '= -1 and (baseline_cm - dd > 5):
confirm += 1
sleep_ms(50)
if confirm >= 6:
paw_detected()
sleep_ms(2000)
else:
print("False alarm")
sleep_ms(200)
else:
baseline_cm = 0.9 * baseline_cm + 0.1 *d

sleep_ms(50)

