Automatic Cheese Grater: Final Project Report

G1: Steph Akakabota, Maylee Tan, Kyler Yeum, Xavier Macalalad

May 14, 2025

1 Opportunity

Preparing fresh grated cheese at home is time-consuming, and commercial automatic graters are
prohibitively expensive ($200+). Our device offers an affordable, push-button solution for fast,
high-quality cheese grating, making fresh meals more accessible to everyday users.

2 High-Level Strategy

Our automatic cheese grater streamlines cheese preparation by integrating two motorized systems:

e Lead Screw Mechanism: A 24V motor with encoder feedback advances a lead screw to
apply controlled pressure to the cheese block.

e Rotary Grater: The original hand crank is replaced with a 24 V motor, which automates
the rotation of the grating drum.

Operation: User loads cheese — button press — screw advances (30k encoder counts) — grater
spins — 5s hold — screw retracts.

3 Integrated Physical Device

Our device integrates a lead screw mechanism for cheese compression and a rotary grater for
shredding. Key actuators, sensors, and moving parts are labeled in Fig. The compact design
enables efficient operation and easy access for maintenance.

4 Function-Critical Decisions

4.1 Load Analysis

Material Basis: Used non-fat mozzarella shear strength (7 = 140kPa) as a conservative estimate
for cheddar (no published data), with 2x safety factor:

Tdesign = 2 x 140 = 280 kPa
Contact Area: Accounting for 50% blade spacing reduction in grating surface:

Aot = 0.5 x (0.025m x 0.050m) = 0.000 625 m?

F=7A=280 x 103 x 0.000625 = | 175N

4.2 Lead-Screw Torque
For Tr8x8 screw (I = 8 mm) with 7 = 0.30 efficiency:

Fl 175 x 0.008
T = = ~|0.74N
T EET

4.3 Lead Screw and Encoder Calculation
A Tr8x8 lead screw (8 mm/rev) with a 64 CPR encoder and 150:1 gearbox yields:
Counts per rev = 64 x 150 = 9600

Counts per mm = @ = 1200

Thus, moving 25 mm requires 25 x 1200 = 30,000 encoder counts.

4.4 Motor Torque-Speed Analysis

The torque-speed relationship for our 24V Pololu gearmotor is:

T = torque (N-m),
V=24V,

T= %(V —kw) w="7.13rad/s (68 RPM),
k = 0.207N-m/A,
R =18.89Q.

Key operating points:
e No-load: 68 RPM (7.13 rad/s) @ 0.071A
e Stall: 0.560 N-m @ 2.7A

24

.560
= —— ~[0.207N-m/A
k=52 ~|0.207N-m/

Safe operation: While rated for 24V, we operate at 9V (37.5% of max voltage) to limit speed
to ~25 RPM and prevent gearbox overload.

oo

5 Reflection for Future Students

Defining our state machine early and verifying motor requirements with quick calculations made
both hardware selection and software development much smoother. However, we underestimated
the time and difficulty of precision machining tasks such as tapping aluminum standoffs, so we
recommend designing to facilitate fabrication and ordering backup components ahead of time.

[\

6 Figures

Transmission (Standoffs,
Shaft Adapter, Shaft
Coupling)

Analog Sensor - ’R\\ v :] -

(Encoder) 4, Microcontroller

~— ’ Transmission (Shaft
— Collar, Beville Disk,
Shim, Bearings)
Digital Sensor
(Button)

(a) Labeled diagram of the fully assembled cheese
grater.

il

EESEEENEEEN Press Motor

Crank Motor

(¢) Updated circuit diagram.

Pololu ltems #4687, #4697 (150:1 Metal Gearmotor 37D 24V) Performance at 24 V
T oo spt 60 o Jen
o =27A
wl i
b o e
o } #9-08-0120 =008t 0007
ol e e

ol

0003 ()

L e
gm0

L
o 100 200 s a0 w0
toraus)

(b) Torque-Speed performance graph.

(Smlaressed i 3 budiolspessed e
.................. (ngwm,«u’. frue)

A evetompes) Habs cubielonoder qeount (9))> = faret
&5 > G
wonlepressed = faise
%xs«mrva':wlsfwﬁmd)
tabs (doube (cnceder qetCount ()))> = tarqet E

(d) State transition diagram.

Figure 1: Overview of system: (a) labeled assembly, (b) torque-speed graph, (c) circuit diagram,

(d) state transition diagram.

7 Appendix A: Bill of Materials

Component Description Qty Cost (8)
Electromechanical Components
Pololu Gearmotor 150:1 Metal Gearmotor with Encoder 2 114.55
DRV8871 Motor Driver Adafruit breakout board 2 16.54
Lab Motor DC motor from lab kit 1 0.00
ESP32 Microcontroller 1 0.00
Mechanical Hardware
X Home Cheese Grater For grating drum and base 1 27.55
Tr8x8 Lead Screw 200mm with brass nut 1 13.88
Aluminum Rod 1/4” x 3 ft solid round rod 1 6.03
M3 x 18mm screws Mounting hardware 33 16.94
McMaster-Carr Components
Step-Down Shaft Adapter 3/8” to 1/4” diameter 1 46.68
Set Screw Shaft Coupling 1/4” diameter 2 25.10
Shaft Collar 1/4” clamping 2 11.34
Belleville Disc Springs 0.319” ID, pack of 10 1 5.00
Stainless Steel Ring Shim 0.01” thick, 1/4” ID 2 17.26
Stainless Steel Ball Bearing Flanged, R4 trade number 2 12.84
Other Components
Ultrasonic Sensor RCWL distance measurement 1 0.00
PLA Filament 3D printing material - 0.00
12V Power Adapter DC power supply 1 24.68
Total Project Cost 377.80

Appendix B: CAD Images

!
.
||

Figure 2: Exploded view of the lead screw assembly.

it

LU
-ouo—.ﬂg‘ﬂ

Figure 3: Exploded view of the crank assembly.

Appendix C: Complete Code

// updated code:

// - Replaced delay(5000) in holdCompress with a 5-second timer interrupt

// - Replaced delay(l) in driveMotorForward and driveMotorBackward with a l-second timer inter
// - Added button debouncing using timer interrupts

#include <ESP32Encoder.h>
#include <Adafruit_INA219.h>

ESP32Encoder encoder;
Adafruit_INA219 ina219;

// Pin assignments

#define MOTOR1_IN1 26
#define MOTOR1_IN2 25
#define ENCODER1_IN1 27
#define ENCODER1_IN2 33
#define BTN 34
#define LED_PIN 13

// Motion constants

#define COUNTS_PER_REV 9600.0 // encoder counts per full screw rev
#define LEAD_MM 8.0 // screw travel (mm) per rev

#define COUNTS_PER_MM (COUNTS_PER_REV / LEAD_MM)

// State-machine

enum State {
idle,
cheeseCompress,
holdCompress,
deCompress

};

// Timer Setup
volatile bool buttonIsPressed = false;
volatile bool DEBOUNCINGflag = false;

hw_timer_t* motorTimer = NULL;

portMUX_TYPE motorTimerMux = portMUX_INITIALIZER_UNLOCKED;
volatile bool oneSecondFlag = false;

volatile int secondsElapsed = O;

volatile bool fiveSecondFlag = false;

hw_timer_t* debounceTimer = NULL;
portMUX_TYPE buttonMux = portMUX_INITIALIZER_UNLOCKED;

#define DEBOUNCE_TIME 50 // 50ms debounce time

// ISR

void IRAM_ATTR btnIsr() {
portENTER_CRITICAL_ISR (&buttonMux) ;
buttonlsPressed = true;
portEXIT_CRITICAL_ISR(&buttonMux) ;
portENTER_CRITICAL_ISR(&motorTimerMux) ;
DEBOUNCINGflag = false;
portEXIT_CRITICAL_ISR(&motorTimerMux) ;
timerStart (debounceTimer) ;

void IRAM_ATTR onDebounceTimer() {
portENTER_CRITICAL_ISR(&motorTimerMux) ;
DEBOUNCINGflag = true;
portEXIT_CRITICAL_ISR(&motorTimerMux) ;
}

void IRAM_ATTR onTimer() {
portENTER_CRITICAL_ISR(&motorTimerMux) ;
oneSecondFlag = true;
secondsElapsed++;
if (secondsElapsed >= 5) {

fiveSecondFlag = true;

3
portEXIT_CRITICAL_ISR(&motorTimerMux) ;

void startTimer() {
secondsElapsed = 0;
fiveSecondFlag = false;
if (motorTimer) {
timerEnd (motorTimer) ;
+
motorTimer = timerBegin(0, 80, true); // 80MHz/80 = 1MHz
timerAttachInterrupt (motorTimer, &onTimer, true);
timerAlarmWrite (motorTimer, 1000000, true); // 1 second
timerAlarmEnable (motorTimer) ;

void stopTimer() {
if (motorTimer) {
timerEnd (motorTimer) ;
motorTimer = NULL;
}
oneSecondFlag = false;
fiveSecondFlag = false;

secondsElapsed = O;

}

// Helper functions

void stopMotor() {
analogWrite (MOTOR1_IN1, 0);
analogWrite (MOTOR1_IN2, 0);

}

void driveMotorForward(int mm) {
encoder.setCount (0) ;
double target = mm * COUNTS_PER_MM;

digitalWrite (MOTOR1_IN2, LOW);
analogWrite (MOTOR1_IN1, 128);

startTimer () ;
while (fabs(double(encoder.getCount())) < target) {
if (oneSecondFlag) {
oneSecondFlag = false;

}
}
stopTimer();
stopMotor () ;

void driveMotorBackward(int mm) {
encoder.setCount (0) ;
double target = mm * COUNTS_PER_MM;

digitalWrite(MOTORl_INl, LOW) ;
analogWrite (MOTOR1_IN2, 128);

startTimer () ;
while (fabs(double(encoder.getCount())) < target) {
if (oneSecondFlag) {
oneSecondFlag = false;

}
}
stopTimer();
stopMotor () ;

bool CheckForButtonPress() {
if ('buttonIsPressed) return false;

¥

buttonIsPressed = false;

Serial.println("Button pressed!");
return true;

// Arduino setup / loop
void setup() {

¥

Serial.begin(115200);
Serial.println("\n== DRV8871 Lead-screw Demo ==");

// Pin modes

pinMode (MOTOR1_IN1, OUTPUT);
pinMode (MOTOR1_IN2, OUTPUT);
pinMode (LED_PIN, QUTPUT);

pinMode (BTN, INPUT_PULLUP);

// Setup debounce timer

debounceTimer = timerBegin(l, 80, true);
timerAttachInterrupt(debounceTimer, &onDebounceTimer, true);
timerAlarmWrite (debounceTimer, DEBOUNCE_TIME * 1000, false);

// Attach button interrupt
attachInterrupt (BTN, btnIsr, FALLING);

pinMode (ENCODER1_IN1, INPUT);
pinMode (ENCODER1_IN2, INPUT);

// Encoder

ESP32Encoder: :uselnternalWeakPullResistors = puType: :up;
encoder.attachHalfQuad (ENCODER1_IN1, ENCODER1_IN2);
encoder.setCount (0) ;

Serial.println("Ready.");

// EVENT DRIVEN PROGRAM
int state = idle;

void loop() {

switch (state) {
case idle:
Serial.println("Idle State.");
stopMotor () ;
if (CheckForButtonPress()) {
state = cheeseCompress;

// One-shot timer

break;

case cheeseCompress:

Serial.println("Compressing 25mm") ;
driveMotorForward(25) ;

state = holdCompress;
break;

case holdCompress:

Serial.println("Holding 5 s");

startTimer();

while (!fiveSecondFlag) {
delay(1);

3

stopTimer();

state = deCompress;

break;

case deCompress:

Serial.println("Retracting 25 mm");
driveMotorBackward(25) ;

state = idle;

break;

10

	Opportunity
	High-Level Strategy
	Integrated Physical Device
	Function-Critical Decisions
	Load Analysis
	Lead-Screw Torque
	Lead Screw and Encoder Calculation
	Motor Torque-Speed Analysis

	Reflection for Future Students
	Figures
	Appendix A: Bill of Materials

